Functional Design Best Practices

Last Modified on 07/07/2021 3:35 am EDT

What is a functional design?

A functional design is the high-level road map of what you want to develop, not how you will develop it.
There are two primary elements to a functional design:

Element Description

Description of the interaction between its actors

Functions
(human and system).

Data Description of the state of the system.

Who benefits from a functional design?

A functional design is intended for the following team members.

Team

Benefit
Member

Developers They know what to build.
Testers They know what tests to run.

Stakeholde Understand scope of development and give
rs approval.

Components of a functional design

We recommend that visual diagrams play a major role in your functional design. There are two primary
diagram types, UML and informal. UML diagrams have the benefit of standardized notation, but, not
everyone understands that notation. Informal diagrams have the benefit of being easily understood, but
lack the formality. The most important aspect of diagrams is that they should clarify a plan, not confuse
people.

Informal Diagram

UML Diagram

PR S} 3

L £l | X3 I o]

& £ 5 - — e

& [store Lorem ipsum dodor sit amet, consectetuer adipiscing elit. L Whdgets |

s Aenean commodo ligula eget dolor. Aenean massa Cum =

Modules so e

i socils natague penatibus et magnis dis parturient montes, 2

- llcontroliers G nascetur ridiculus mus, Donec quam felis, ultricies nec,

kits pellentesque eu. pretium quis, sem. Nulla consequat Blissco B .

massa quis enim. Donec pede justo, fringilla vel, aliquet 2 Y

lAdd-Ons %
T1 :

| (o] acooeson s

L2

)
@
55

ETR0-£0-T% The Modde
evtsoo-ev: The sear
4500-75: Serme st cood bowrs

5 - e
H- @

- [Everything Fise

Level of Detail

The level of detail for each functional design might vary. Remember, the goal of the functional design is to
create an easily understood visual representation of what you want to develop. Keep in mind important
factors such as collaboration, organizational culture, team location, and so on.

Include full details for all externally-visible system behavior, including behavior through system

interfaces.
Do not include internal system details.
Keep these in mind when determining the level of detail to include:

Not enough detail, developers might make incorrect assumptions.
Not enough detail, testers might not have enough information for sufficient testing.

Too much detail, your design takes too long to create.
Too much detail, developers and testers work according to the specification, instead of challenging

its deficiencies.

