
Workflow Development Best Practices
Last Modified on 01/16/2018 7:06 am EST

Workflows are the core of business process management. It is important that you develop workflows
according to best practices.

Workflow Composition

Workflow visualization affects and aids the collaboration on workflows between cross-functional teams.

Develop an effective naming convention.
Use meaningful names
Use understandable names
Be consistent with names

When possible, add swimlanes to divide the workflow. Swimlanes are intended to divide the
workflow by user or department. Swimlanes help optimize workflows, because you can easily
identify areas with too many activities.
Add comments and labels to make the workflow easier to understand (especially for business
users).
Do not add too many empty activities for visual effect. This can cause inflated DB tables with waste
data, and performance issues. Only use empty activities when necessary, for example, before split
activities, and to ensure clear layout.

Forms Development

Data Model

There are two Data Model methodologies
Create the data model, then view
View first

If you create the data model first, plan your data model during the requirements stage.
Use appropriate and meaningful names
Select appropriate types for the input you are expecting.
We recommend using a primary key that consts of a single field.
When selecting a key, remember:

For activity tables (UACTs), only use system keys
Select the system key according to your solution requirements (fldwfID, fldiActID, fldAlid)

We recommend that you define the display field yourself, and not use the default, since it appears
in several places.
Use caution if you decide to share activity tables between workflows. When you share tables
between workflows, the data is merged into a single table. This can cause the table to grow in size,
unnecessarily.
Do not place too many activity views on the same UACT table. This can cause the table to grow in
size, unnecessarily. Each field in each table adds a column to the table, and combo boxes add two
columns.
 Tables should contain a maximum of 40-50 columns.
Consider whether a field should be nullable. If the field is not nullable, and the user does not enter a
value, an error occurs. On the other hand, if the field is not nullable, it ensures that the field is
populated. To prevent an error, you can place a validator on this field in the view.

Lookup Tables

Lookup tables do not support multiple keys.
Keep the names that you selected during the design. Since the lookup table is accessed by a path, if
you change names in the lookup table, the reference breaks.

Sub-Views

Use sub-views to create reusable components, or to logically divide the form.
Use caution when you use a sub-view from a different workflow. The sub-view's data model is saved
with the other workflow. Therefore, if you need to export the workflow, you must export the other
workflow.
We recommend not changing the names of workflows, views, and activities because the path to the
sub-view might cause errors. Spend time during the design stage to select appropriate workflow
names.
Consider using sub-views for header records, such as customer details, which remain consistent
throughout the workflow. Since the view is maintained in a single place, you can accelerate process
development and make maintenance easier.
Do not embed sub-views within sub-views, within sub-views. Do not make the solution overly
complex to understand, investigate, and troubleshoot.

Workflow Variables

Consider using workflow variables to expose key parameters, or to control logic, so they are simple
to maintain.

Look and feel

Follow these guidelines when you use a predefined color scheme and template

Use CSS classes
Use real SRC for images
Do not use style property
Do not use images from the attachments of any other dynamic location

Creating Reusable Content

Cora SeQuence provides several opportunities for creating reusable components. Take advantage of
reusable content to save time and effort.

Sub-views
Sub-workflows
Global variables
Extending form templates

Tip: Create a general workflow that includes a list of activities that represent various types of controls
that you want to reuse.

