
Configuring Kafka Producers and Subscribers
Last Modified on 06/12/2025 4:50 am EDT

Starting with V10.0, Cora SeQuence has been renamed to Cora Orchestration.

V10.x

Overview

You configure Kafka activities to set up a messaging mechanism within Cora SeQuence or between Cora
SeQuence and other applications. Apache Kafka is a distributed streaming platform that is designed to be
fast, scalable, and durable. Kafka is generally used to move data between systems or applications and to
enable applications to consume data required to perform specific actions.

Use cases

Kafka messaging mechanism can be used in different scenarios. Following are a few examples:

Asynchronous communication with external systems:
One-to-one communication scenario:

1. Receive messages from an ERP system to initiate an invoice approval workflow.
2. After invoice approval, send message back to the ERP system for further processing.

Event publishing:
One-to-many communication scenario: Send messages to a topic that has multiple subscribers.

1. Send a message to the topic after a payment process has completed.
2. Multiple systems that subscribe to the topic perform an action based on the message.

Multiple tasks per single message:
Handle a message sent from an external system to trigger multiple workflows:

A solution for welcoming a newly hired employee. One message with information about the
new employee triggers multiple workflows, such as starting a workflow that requests the IT
department to supply a laptop to the new employee, another workflow that requests the
Security department to issue an ID tag, and yet another workflow for the HR department to
add the employee to the relevant systems.

Configuration

Configuring a Kafka messaging on Cora SeQuence involves the following steps:

StepsSteps Performed by Performed by

1. Create the Kafka connection Cora SeQuence Administrator

2. Add a Kafka producer

NOTE: NOTE: Required only for the Kafka Producer activity.

Cora SeQuence Administrator

®

3. Configure the Kafka integration activities in the workflow:
a. Configure the Kafka Producer activity
b. Configure the Kafka Subscriber activity

Developer

StepsSteps Performed by Performed by

For more details on how Apache Kafka works in Cora SeQuence, see this article.

Create the Kafka connection

Configure the connection to the Kafka service. You can create new connections, edit existing ones, or delete
them.

Prerequisites

Before you create a Kafka connection string, make sure that you have:

A Kafka deployment (either SAAS or IAAS) is up and running.
The Kafka connection details, including the required credentials.

For more information on the Kafka server requirements, see this article.

Procedure

1. Go to Administration > Global Settings > Kafka ConnectionsAdministration > Global Settings > Kafka Connections, and click Add New RecordAdd New Record.
2. Enter a meaningful name for the Kafka connection string.
3. Enter the Connection URL.
4. If required, enter the relevant credentials to access the Kafka server.
5. By default, Cora SeQuence uses the parameters configured on the Kafka server. To change the default

settings, click Advanced OptionsAdvanced Options.

To learn more about Kafka parameters, refer to the Kafka documentation.

Add a Kafka Producer

Kafka producer is the mechanism that publishes messages to one or more topics. You need to set up at least
one Kafka Producer.

Prerequisite

Make sure that a Kafka connection exists.

Procedure

1. Go to Administration > Global Settings > Kafka ConnectionsAdministration > Global Settings > Kafka Connections, and click Add New RecordAdd New Record.
2. Enter a meaningful name for the Kafka Producer.
3. Select the Kafka connection.
4. By default, Cora SeQuence uses the parameters configured on the Kafka server. To change the default

settings, click Advanced OptionsAdvanced Options.
5. Click AddAdd.

Delivery guarantee

http://kb.pnmsoft.com/help/kafka-cluster-minimum-requirements
http://kb.pnmsoft.com/help/kafka-cluster-minimum-requirements
https://kafka.apache.org/documentation/

By default, the Kafka Producer acknowledges message delivery. When a message is sent, the activity waits up
to 303 seconds to receive the delivery report. This default timeout is calculated as the sum of

DeliveryReportWaitTimeout , LingerMs and MessageTimeoutMs parameters from the Advanced Options.

To set up delivery guarantee, configure the following parameters under Advanced OptionsAdvanced Options.

ParameterParameter DescriptionDescription UnitUnit DefaultDefault MinimumMinimum
MaximuMaximu
mm

BatchNumMessagesBatchNumMessages Determines the maximum
number of messages per batch
in MessageSet.

int 10000 1 20000

CompressionLevelCompressionLevel Determines the compression
level parameter for algorithm
selected by the

CompressionType configuration
property.
Higher values result in better
compression at the cost of more
CPU usage.
Usable range is algorithm-
dependent:

[0-9] for gzip
[0-12] for lz4
only 0 for snappy
-1 = codec-dependent
default compression level

int -1 -1 12

CompressionTypeCompressionType Determines the compression
codec to use for compressing
message sets. This is the default
value for all topics.

enum None - -

DeliveryReportFieldsDeliveryReportFields Determines the fields listed in
the delivery reports.
Supported values: key, value,
timestamp, headers, all, none .
Disabling unused delivery report
fields improves the maximum
throughput and reduces memory
usage.

string - - -

DeliveryReportWaitTiDeliveryReportWaitTi
meoutmeout

Determines the time, in
milliseconds, to wait for a
response from the Kafka server.
When the configured period of
time elapses, a failure message
is logged.

ms 3000 3000 50000

EnableBackgroundPollEnableBackgroundPoll Specifies whether or not the
producer should start a
background poll thread to
receive delivery reports and
event notifications. Generally, it
should be set to true. If set to
false, you need to call the Poll
function manually.

boolea
n

True - -

EnableDeliveryReportEnableDeliveryReport Determines whether or not to
enable notification of delivery
reports. Typically should be set
to true. Set it to false for "fire
and forget" semantics and a
small boost in performance.

boolea
n

True - -

EnableGaplessGuarantEnableGaplessGuarant
eeee

When set to true , any error
that could result in a gap in the
produced message series, when
a batch of messages fails, will
raise a fatal error and stop the
producer. Messages failing due
to MessageTimeoutMs are not
covered by this guarantee.
Requires

EnableIdempotence=true .

boolea
n

False - -

EnableIdempotenceEnableIdempotence When set to true , the producer
will ensure that messages are
successfully produced exactly
once and in the original produce
order.

boolea
n

False - -

LingerMsLingerMs Determines a delay, in
milliseconds, before the
Producer sends the message to
the topic. The messages
accumulate before constructing
message batches (MessageSets)
to transmit to brokers. A higher
value allows larger and more
effective (less overhead,
improved compression) batches
of messages to accumulate at
the expense of increased
message delivery latency.

ms 0.5 - -

ParameterParameter DescriptionDescription UnitUnit DefaultDefault MinimumMinimum
MaximuMaximu
mm

MessageSendMaxRetriMessageSendMaxRetri
eses

Determines the number of times
the system retries sending a
failing Message.

NOTENOTE Retrying may cause reorderingunless EnableIdempotence isset to true.

int 2 1 4

MessageTimeoutMsMessageTimeoutMs Determines the local message
timeout that is enforced locally
and limits the time a produced
message waits for successful
delivery.
A time of 0 is infinite. This is the
maximum time kafka may use to
deliver a message (including
retries). Delivery error occurs
when either the retry count or
the message timeout are
exceeded.

ms 300000 150000 60000
0

PartitionerPartitioner Values:
Random - random

distribution
Consistent - CRC32 hash

of key (Empty and NULL
keys are mapped to single
partition)

ConsistentRandom - CRC32
hash of key (Empty and
NULL keys are randomly
partitioned)

Murmur2 - Murmur2 hash
of key (NULL keys are
mapped to single partition)

Murmur2Random -
Murmur2 hash of key
(NULL keys are randomly
partitioned. This is
functionally equivalent to
the default partitioner).

enum Consisten
tRandom

- -

ParameterParameter DescriptionDescription UnitUnit DefaultDefault MinimumMinimum
MaximuMaximu
mm

QueueBufferingBackprQueueBufferingBackpr
essureThresholdessureThreshold

Determines the threshold of
outstanding not yet transmitted
broker requests needed to
backpressure the producer's
message accumulator. If the
number of not yet transmitted
requests equals or exceeds this
number, produce request
creation that would have
otherwise been triggered (for
example, in accordance
with LingerMs) will be delayed.
A lower number yields larger
and more effective batches. A
higher value improves latency
when using compression on slow
machines.

int 1 0 2

QueueBufferingMaxKbQueueBufferingMaxKb
ytesytes

Determines the maximum total
message size sum allowed on
the producer queue. The queue
is shared by all topics and
partitions. This property has
higher priority
than QueueBufferingMaxMessages .

int 1048576 10 209715
2

QueueBufferingMaxMeQueueBufferingMaxMe
ssagesssages

Determines the maximum
number of messages allowed on
the producer queue. The queue
is shared by all topics and
partitions.

int 100000 1 100000

RequestTimeoutMsRequestTimeoutMs Determines the acknowledge
timeout of the producer request.

ms 5000 2500 10000

RetryBackoffMsRetryBackoffMs Determines the backoff time
before retrying a protocol
request.

ms 100 50 200

ParameterParameter DescriptionDescription UnitUnit DefaultDefault MinimumMinimum
MaximuMaximu
mm

Advanced Options screenAdvanced Options screen

When you set up Kafka to acknowledge delivery, the Producer sends one message at a time. After the
message is successfully sent, the workflow continues, and the activity is marked as successful.

If there are connection issues, a failure response is immediately sent to Cora SeQuence.
If other issues occur, such as topic overflow, Kafka returns a failure status after a certain delay.

After the failure message is returned, Cora SeQuence sets the activity to failed.

NOTENOTE
Carefully consider between the need for delivery guarantee and performance requirements. When you
configure delivery guarantee, the system performs additional actions and activities that impact
performance.

To learn more about Kafka parameters, refer to the Kafka documentation.

Configure the Kafka Producer activity

The Kafka Producer activity is responsible for sending the message object and the topic name to the
Kafka Producer.
Each activity instance can define a different message based on Cora SeQuence expressions.

Prerequisite

A Kafka Producer has been configured.

Procedure

1. To add a Kafka Producer activity to your workflow, in the App Studio, select Integration>Kafka ProducerIntegration>Kafka Producer.
2. On the Kafka Producer Properties screen, enter a significant name and alias, and then click NextNext.
3. Select a Kafka Producer from the list, or create a new one.

https://kafka.apache.org/documentation/

4. Click NextNext.
5. Click ProducerRecord message , and clear the IsNIsNull ull option.
6. To show the configurable properties, expand the ProducerRecord message node.

Enter topic name.
If the topic does not exist, depending on Kafka's configuration, a topic can be automatically
created.
Set the content and body of the message.
Set the key.

7. Click FinishFinish.

Configure the Kafka Subscriber activity

The subscriber connects to Kafka and retrieves the message from a topic. Each subscriber connects to a
specific topic. The Kafka Subscriber is a JES job.

Prerequisites

A Kafka producer has been configured.
Make sure that you have the relevant Group ID.
To learn more about groups in Kafka, refer to this page.
Obtain the relevant Kafka topic name from the Project Manager or Business Analyst.

Procedure

1. To add a Kafka Subscriber activity to your workflow, in the App Studio, select Integration>KafkaIntegration>Kafka
SubscriberSubscriber.

2. Click the Kafka Subscriber activity.
3. On the Kafka Subscriber Activity Properties screen, enter a significant name for the activity, and then

click NextNext.
4. On the job tab, set the following:

NameName: Enter a name for the actual job performed by the Kafka Subscriber activity.
ScalingScaling: Set the required scaling settings. (Scaling is available only for Cora SeQuence VCora SeQuence V9.39.3 and
later versions.)
For more details, see this article.
Job is enabledJob is enabled: Select this option only after you complete the workflow, or if you want to run the
job for testing purposes.

5. Click NextNext.
6. On the Command tab, set the following:

Kafka ConnectionKafka Connection (mandatory): Select the relevant connection string.
Group ID Group ID (mandatory): Enter the group ID relevant to your implementation.
Topic Name Topic Name (mandatory): Enter the Kafka topic name.

7. By default, Cora SeQuence uses the parameters configured on the Kafka server. To change the default
settings, click Advanced OptionsAdvanced Options.

8. If your implementation requires that each message is read and processed before moving on to the next
message, select AcknowledgementAcknowledgement.

9. Click FinishFinish.

To learn more about Kafka parameters, refer to the Kafka documentation.

V9.2.2 - 9.3

https://blog.cloudera.com/scalability-of-kafka-messaging-using-consumer-groups/
http://knowledgecenter.gcora.genpact.com/help/define-job-scaling-and-redundancy-settings
https://kafka.apache.org/documentation/

Overview

You configure Kafka activities to set up a messaging mechanism within Cora SeQuence or between Cora
SeQuence and other applications. Apache Kafka is a distributed streaming platform that is designed to be
fast, scalable, and durable. Kafka is generally used to move data between systems or applications and to
enable applications to consume data required to perform specific actions.

Use cases

Kafka messaging mechanism can be used in different scenarios. Following are a few examples:

Asynchronous communication with external systems:
One-to-one communication scenario:

1. Receive messages from an ERP system to initiate an invoice approval workflow.
2. After invoice approval, send message back to the ERP system for further processing.

Event publishing:
One-to-many communication scenario: Send messages to a topic that has multiple subscribers.

1. Send a message to the topic after a payment process has completed.
2. Multiple systems that subscribe to the topic perform an action based on the message.

Multiple tasks per single message:
Handle a message sent from an external system to trigger multiple workflows:

A solution for welcoming a newly hired employee. One message with information about the
new employee triggers multiple workflows, such as starting a workflow that requests the IT
department to supply a laptop to the new employee, another workflow that requests the
Security department to issue an ID tag, and yet another workflow for the HR department to
add the employee to the relevant systems.

Configuration

Configuring a Kafka messaging on Cora SeQuence involves the following steps:

StepsSteps Performed by Performed by

1. Create the Kafka connection Cora SeQuence Administrator

2. Add a Kafka producer

NOTENOTE Required only for the Kafka Producer activity.

Cora SeQuence Administrator

3. Configure the Kafka integration activities in the workflow:
a. Configure the Kafka Producer activity
b. Configure the Kafka Subscriber activity

Developer

For more details on how Apache Kafka works in Cora SeQuence, see this article.

Create the Kafka connection

Configure the connection to the Kafka service. You can create new connections, edit existing ones, or delete

®

http://kb.pnmsoft.com/help/kafka-cluster-minimum-requirements

them.

Prerequisites

Before you create a Kafka connection string, make sure that you have:

A Kafka deployment (either SAAS or IAAS) is up and running.
The Kafka connection details, including the required credentials.

For more information on the Kafka server requirements, see this article.

Procedure

1. Go to Administration > Global Settings > Kafka ConnectionsAdministration > Global Settings > Kafka Connections, and click Add New RecordAdd New Record.
2. Enter a meaningful name for the Kafka connection string.
3. Enter the Connection URL.
4. If required, enter the relevant credentials to access the Kafka server.
5. By default, Cora SeQuence uses the parameters configured on the Kafka server. To change the default

settings, click Advanced OptionsAdvanced Options.

To learn more about Kafka parameters, refer to the Kafka documentation.

Add a Kafka Producer

Kafka producer is the mechanism that publishes messages to one or more topics. You need to set up at least
one Kafka Producer.

Prerequisite

Make sure that a Kafka connection exists.

Procedure

1. Go to Administration > Global Settings > Kafka ConnectionsAdministration > Global Settings > Kafka Connections, and click Add New RecordAdd New Record.
2. Enter a meaningful name for the Kafka Producer.
3. Select the Kafka connection.
4. By default, Cora SeQuence uses the parameters configured on the Kafka server. To change the default

settings, click Advanced OptionsAdvanced Options.
5. Click AddAdd.

Delivery guarantee

By default, the Kafka Producer does not acknowledge message delivery. When setting up Kafka to handle
financial transactions, for example, you need to make sure that every message is delivered.

To set up delivery guarantee, configure the following parameters under Advanced OptionsAdvanced Options.

ParameterParameter DescriptionDescription ValueValue

BatchNumMessagesBatchNumMessages Determines the number of messages per batch. 1

DeliveryReportFieldsDeliveryReportFields Determines the fields listed in the delivery reports.
Supported values: key, value, timestamp, headers, all, none.

all

http://kb.pnmsoft.com/help/kafka-cluster-minimum-requirements
https://kafka.apache.org/documentation/

DeliveryReportTimeoutDeliveryReportTimeout Determines the time, in milliseconds, to wait for a response from
the Kafka server.
When the configured period of time elapses, a failure message is
logged.

3000

EnableDeliveryReportEnableDeliveryReport Determines whether or not to enable notification of delivery
reports.

True

LingerMsLingerMs Determines a delay, in milliseconds, before the Producer sends the
message to the topic.

0.5

ParameterParameter DescriptionDescription ValueValue

Advanced Options screenAdvanced Options screen

When you set up Kafka to acknowledge delivery, the Producer sends one message at a time. After the
message is successfully sent, the workflow continues, and the activity is marked as successful.

If there are connection issues, a failure response is immediately sent to Cora SeQuence.
If other issues occur, such as topic overflow, Kafka returns a failure status after a certain delay.

After the failure message is returned, Cora SeQuence sets the activity to failed.

NOTENOTE
Carefully consider between the need for delivery guarantee and performance requirements. When you
configure delivery guarantee, the system performs additional actions and activities that impact
performance.

To learn more about Kafka parameters, refer to the Kafka documentation.

Configure the Kafka Producer activity

The Kafka Producer activity is responsible for sending the message object and the topic name to the Kafka
Producer.
Each activity instance can define a different message based on Cora SeQuence expressions.

Prerequisite

A Kafka Producer has been configured.

Procedure

1. To add a Kafka Producer activity to your workflow, in the App Studio, select Integration>Kafka ProducerIntegration>Kafka Producer.
2. On the Kafka Producer Properties screen, enter a significant name and alias, and then click NextNext.
3. Select a Kafka Producer from the list, or create a new one.
4. Click NextNext.
5. Click ProducerRecord message , and clear the IsNIsNull ull option.
6. To show the configurable properties, expand the ProducerRecord message node.

Enter topic name.
If the topic does not exist, depending on Kafka's configuration, a topic can be automatically
created.
Set the content and body of the message.
Set the key.

7. Click FinishFinish.

Configure the Kafka Subscriber activity

The subscriber connects to Kafka and retrieves the message from a topic. Each subscriber connects to a
specific topic. The Kafka Subscriber is a JES job.

Prerequisites

A Kafka producer has been configured.
Make sure that you have the relevant Group ID.
To learn more about groups in Kafka, refer to this page.
Obtain the relevant Kafka topic name from the Project Manager or Business Analyst.

Procedure

1. To add a Kafka Subscriber activity to your workflow, in the App Studio, select Integration>KafkaIntegration>Kafka
SubscriberSubscriber.

2. Click the Kafka Subscriber activity.
3. On the Kafka Subscriber Activity Properties screen, enter a significant name for the activity, and then

click NextNext.
4. On the job tab, set the following:

NameName: Enter a name for the actual job performed by the Kafka Subscriber activity.
ScalingScaling: Set the required scaling settings. (Scaling is available only for Cora SeQuence VCora SeQuence V9.39.3 and
later versions.)
For more details, see this article.
Job is enabledJob is enabled: Select this option only after you complete the workflow, or if you want to run the
job for testing purposes.

https://kafka.apache.org/documentation/
https://blog.cloudera.com/scalability-of-kafka-messaging-using-consumer-groups/
http://knowledgecenter.gcora.genpact.com/help/define-job-scaling-and-redundancy-settings

5. Click NextNext.
6. On the Command tab, set the following:

Kafka ConnectionKafka Connection (mandatory): Select the relevant connection string.
Group ID Group ID (mandatory): Enter the group ID relevant to your implementation.
Topic Name Topic Name (mandatory): Enter the Kafka topic name.

7. By default, Cora SeQuence uses the parameters configured on the Kafka server. To change the default
settings, click Advanced OptionsAdvanced Options.

8. If your implementation requires that each message is read and processed before moving on to the next
message, select AcknowledgementAcknowledgement.

9. Click FinishFinish.

To learn more about Kafka parameters, refer to the Kafka documentation.

https://kafka.apache.org/documentation/

