
CI/CD Platform Setup Instructions and Best Practices
Last Modified on 11/14/2022 12:48 pm EST

Overview

This document targets architects and tech leads.

There are two options for customizing Cora SeQuence: creating a custom application or using release
pipelines to deploy small changes.

When should you use a pipeline?

How do you decide if you need to create a custom application or run a release pipeline?

Use a release pipeline to Create a custom application when you

Change the logo.
Change the menu items.
Add Java Script or CSS files.
Add ASPSX pages without code behind, just
with markup changes. For example, adding
a customized inbox page.

Need to write code behind.
Need to debug.
Can’t use release pipeline and you want to
ensure all files and changes are present in
the custom application for a simple
deployment.

Types of pipelines

There are two types of platform release pipelines.

Installation pipeline
Customization pipelines (Release Shared
Resources)

Installs and configures the Cora SeQuence
platform.
To be used for initial installations and
upgrades (Version 9 only).
Manual steps may be needed in case of
upgrades. Usually running SQL scripts.
This pipeline installs Cora SeQuence pre-
built applications or a custom application.
The pipeline also includes the exact same
steps as the customizations pipeline to
ensure all changes are applied after the
Cora SeQuence platform is installed.

These pipelines copy files and perform XDT
transformations from project repos into the Cora
SeQuence platform servers and environments.

Create the customization repos

The pipelines takes artifacts (files) from a repo and deploys them to an environment.

You can create as many Azure Git repos as you need.

The recommendation is one repo for the custom applications, if you have, and separate repos for each of
the main folders. This setup provides greater flexibility when deploying specific versions, as the repos
are separated.

If you have multi-language requirements you need to add or change files in these two folders:
‘Shared Resources’ and ‘AppGlobalResources’. Use one or two separate repos for these files.
If you need to add new files and pages, you need to have a separate repo for them.
If you have transformations, for menus, or config files create a separate repo for the files.

Create the customization pipeline

Same format/template/procedure… Most of the steps are similar. The difference is mainly on the agents,
tasks, environment, and approvals.

Remember to save your work after every step.

1. On Azure DevOps, select Pipelines>Releases.

2. Click + New, and then select + New release pipeline.

3. At the top-right corner, click Empty job.

4. Add artifacts to the pipeline.
You can add as many repos (artifacts) to the pipeline. When the pipeline runs, it downloads the files
from the repos to the servers to be copied or transformed.

a. Click the + Add link.

5. Select Azure repos Git.

6. Select the current project (or another project that contains the files), the repo name, and under
default version, select Specify at the time of release creation.

7. If required, add more artifacts (repos) by repeating steps 1 to 3.
The release pipeline should look like this:

Create the first stage and add tasks

It’s recommended to rename the stage to reflect the environment.

1. Click the stage box and update the Stage name property on the properties pane.

2. Create tasks.
To see the tasks list, click 1 job, 0 task.
First, you need to set the agent to be the same as the platform pipeline.
For that, you need to delete the ‘agent job’ and add ‘deployment group job’.

a. To delete the ‘Agent job’ select it, and then press Delete on your keyboard.

b. Confirm the deletion.

3. Next, add a deployment group job.
Click the ellipsis button (…), and then select Add a deployment group job.

4. In the ‘Deployment group’ drop down list, select the relevant deployment group.

Note
In some projects, the customer IT team creates the agent for each environment. In such cases, you
don’t need to create a new one. You select the agent from the Deployment Group drop-down list.

Option 1: Customer IT has already created an agent.
Option 2: Create the agent from scratch.
Option 3: Share an existing agent from another project.

5. If an agent already exists in another project, you can share it to use it in your pipeline.
To share a ‘deployment group’, you need to click the ‘Pipelines’/‘Deployment groups’, and then click
the group you want to share.

6. In the properties screen, click the Share button.

 Note
You need permissions to the project from which you want to share the agent.

Add more tasks

There are a few different scenarios or tasks that can be used in the pipeline: File copy and File
transformations. In some cases, you need to use File Tokens.

File Copy

1. The first step is to delete the ‘.git’ folder from the artifacts folder.

2. The second step is to set the file copy. The target folder is the physical folder. If both Flowtime and
Administration are installed in the same server, you need to add another ‘Copy Files’ and set the
target folder appropriately.

3. Under Advanced, make sure that the ‘Overwrite’ option is selected.

 *The ‘_Shared Resources’ is the ‘Source alias’ from the artifacts.

File transformations

You should NOT replace any Cora SeQuence file with your own files. You should only transform the
content of the files.
For example, add or change menus or edit a config file.

Azure DevOps pipelines support XDT transformation and you can either transform an existing file, or
create a new file.

Use the ‘XDT Transform’ task, in the Transformations field.

Syntax: {xdt path} => {xml path}[=> {output path}]

The output path is not mandatory.

Transform Portal Menu task

Transform Services Files

File tokens

In some cases, you will need to ‘tokenize’ the config files and have different values for each stage
(environment). To do this, use the ‘Replace Tokens’ task.

Tokenized files are files with a ‘token’ representing a value to be set differently on the different
environments. The values are driven by the pipeline variables. A token is the variable name surrounded
by #{Variable name}#

 The target files are the physical locations of the tokenized files.

Add a new variable

1. Open Variables.

2. To add a new variable, click the + Add button.
3. Set the variable name and set the scope to be the stage (environment), and then select the

appropriate value for this stage.
4. To add a value to a different stage, add a new variable, and then give it the same name.

Set approvers to the stage

Each stage should have an approval cycle before it starts and another one after it completes.

The approval before the release stage ensures that the target environment is ready for the release. For
example, before releasing to QA, you want to make sure that all the QA activities have been completed.

The approval after the state is like a thumbs up to the release. This approval should be granted only after
a quick smoke test.

Save the pipeline

When you are done, save the pipeline.

Add more stages

After the Dev stage is set up and running, you need to create additional stages for the other
environments.

1. To do this, clone the current stage.

2. Rename the stage with the relevant name. For example, QA or UAT.
3. Change the deployment group job, by setting it to the deployment group of the current

environment.

4. The remaining steps are similar to creating the customization pipeline.

5. After you are done, save the pipeline.

