
Template Project for Portal Customization
Last Modified on 11/10/2022 1:27 pm EST

Overview 

Among other things, the oneClick_Install_Env_Local.ps1 PowerShell function downloads and unpacks
the customization project template. The customization template is a Visual Studio project that enables
you to manage back-end features, such as shared resources, configuration transformation, custom C#
code, among others and then apply your changes onto the portal application.

The unpacked folder structure includes several folders. Some are dedicated for common customization
scenarios that don't require React development and others include templates for complex React
customization scenarios.

Folders related to common customization
scenarios

Folders related to scenarios that require React
development

/deploy: Contains PowerShell functions for
setting up the development environment for
portal customization.

/src/app/modules: Contains containers ("pages")
onto which you add React components. These
containers are ultimately your pages, similar to
aspx files that contain ascx files without any logic.

Customization template file

structure



/src: Contains code templates for the
customizable components.

/src/components: Contains a React components
folder, where each component is an independent
component with single responsibility.

Folders related to common customization
scenarios

Folders related to scenarios that require React
development

The addons folder

The templates under the addons folder are helpful for customization scenarios that do not require React
development. 

For example:

Add a custom menu item transformation
Add other configuration file transformations
Add a Form Viewer control that loads a custom Cora Orchestration view within an aspx page, which
opens as a portal tab
Add C# code that compiles at runtime
Add CSS files, fonts, images, and other assets to the Shared Resources folder based on the provided
folder hierarchy

Folder location: /src/addons

addons folder contents

Folder Contents

/aspnet/app_code Contains custom C# code.
Only *.cs files are copied into the customized application and compiled on
demand at runtime.

/aspnet/pages Contains custom ASP.NET pages.
Only *.aspx files are copied into the customized application's root folder.

/assets Contains static and binary contents that are copied as is into the
customized application's root folder.

/settings Contains config files and resources that are copied into the customized
application's root folder.

/transform Contains partial XML configuration files that are applied onto existing
configuration files according to the Shared Resources hierarchy and copied
to the customized application's root folder.



metadata.json Contains the customization package name and version. This file is used by
the application build scripts.

Folder Contents

IMPORTANT 
All the files and folders that you add to the addons folder keep their original file folder structure after
they are copied to the customized application.
For example, if you add a ‘mycustom’ folder with an aspx file to /aspnet/pages/custom/mypage.aspx,
then the path in the customized application looks like this: inetpub\wwwroot\Cora
SeQuence\Flowtime 1\Custom\mypage.aspx.

The services folder

Application services are singletons and do not hold a state. They mainly contain common and shared
functionality for daily usage, such as loggers, managers, and web clients, among others. 

Folder location: /src/services

Available services

Folder Description

client-service Performs HTTP requests to API and web servers.

component-service Renders React components from a URL.

config-service Manages application config files.

context-service Handles application session context.

inject-service Allows dependency injection.



log-service Displays log messages on the browser console.

navigation-service Handles application navigation between known and registered routes.

route-service Manages components and routes.

shared-code Shares code between the portal application and the customized
application.

side-effect-service Handles side effects and events.

state-service Manages Redux store and application states.

translation-service Enables the use of application localization resources.

Folder Description

Service usage example:

Line 1: Import service
Line 4: Call for service functionality

The modules folder

Application modules are similar to HTML pages, but in component-based React, they are called modules.
A module represents a separate business logic. Each module can contain multiple inner components. 

For example: notifications is a module that has Title, Grid, Search, and Filter components and performs
HTTP requests to receive information and bind it into its components. 

Folder location: /src/app/modules

The components folder

Application components are a lower-level logic or UI representation code that can be reused multiple



times in different places without the need to copy paste. They act like classes in object-oriented
languages. Each rendered component has its own instance reference. 

For example: The Menu component has a few child components of type Link. Each Link component has
its own text and navigation URL. 

Folder location: /src/components/common

Component usage example:

Line 1: Import component

Line 6: Render component

Global configurations

You can set global configurations and apply them to the main portal application. 

Global configuration file location: /src (root level)



Global configuration JSON files

appConfig.js Contains custom configuration that is applied to the main portal application
at runtime.

appStyles.css Contains custom styles that are applied to the main portal application at
runtime.

exported-modules.js Contains information about the customized components. The information is
applied to the portal application during application build and packaging. 


