
Add Custom Actions
Last Modified on 12/02/2024 1:37 am EST

V10.6

Overview

As a workflow developer, you can now add custom actions relevant to case management in a solution.
Addition of custom actions helps ease the solution customization per customer needs.

Below is a comparison between the custom action types:

Custom actionCustom action
typetype

FrontendFrontend BackendBackend

Use case An action that requires input from the
user via forms. 
For example: Update case type and
Insert comment.

An action that can be executed on a case
without additional input from the user. 
For example: Close case and Mark for QC.

Command OpenWorkflowWindowCommand InvokeWorkflowCommand

Workflow
guidelines for
the action logic

Extract parameters from the
query string. 
For example:

rt.HttpRequest.QueryString["Sele
ctedItems"]

Design the forms to fit the dialog
frame size.
Consider setting a meaningful end
message.
Consider adding a timer to handle
abandoned processes.
Set visibility to hidden.

Start with HTTP Input.
End with HTTP Output.
Extract parameters from the HTTP
Input body. 
For example:

- Join({HTTP Input}.In["body"].Selecte
dItems, ",", true)
- TryElse(ToString({HTTP Input}.In["bo
dy"].Parameters.where(Name=="myP
aram1").last().Value),"")

Set visibility to hidden.
Consider setting the persistence mode
to run in-memory.
The HTTP Listener InvokeWorkflow is
a prerequisite for the backend custom
actions.

Completion
message

The workflow end message. App notification pop up.

Configure custom actions

To configure custom actions, follow the steps below:



StepStep ActionAction

1. Create the workflow with the logic of custom actions.

2. Create a yaml (ConfigSet) with custom actions, for the grids
where the custom actions should be available.

3. Link between the ConfigSet and your Solution.
For HotOperations Solutions, use the solution wizard to
set the ConfigSet.
For other implementations (like Cora Orchestration
solution), use the Portal.ConfigSetId  application variable to
set the required ConfigSet.

Once all this is done, refresh the portal page to see the custom actions in the context menu or the toolbar in
the portal.

1. Create and import the workflow and the ConfigSet

Use the custom action template CoraOrchestrationTemplates in this link to learn about the configuration
options for custom actions. The package includes the following.

TypeType NameName CommentComment

ConfigSet CustomActionExample_ConfigSet.zip Contains example of a yaml document for
custom actions. 

Use this as a template for configuring
custom actions. 
Contains examples of:

Frontend and backend actions.
Use of expressions.
Setting the order of the actions.
Removing standard actions.
Using display rules.

Workflow CA Frontend Example1.zip Sample workflow for a frontend custom
action. 
Use this as a template for actions that
require input screens from the user.

Workflow CA Backend Example2.zip Sample workflow for a backend custom
action. 
Use this as a template for actions that do
not require any input from the user. This
workflow also imports the web service
“InvokeWorkflowInvokeWorkflow” that is mandatory for
the backend actions.

https://repo.corasequence.digital/#browse/browse:CoraOrchestrationTemplates


2. Create yaml (ConfigSet) with custom actions

There are three main sections in the yaml document:

SectionSection DescriptionDescription

commandManagerIdcommandManagerId Defines the relevant grid for the custom actions. 
The available options are:

commandManagerIdcommandManagerId GridGrid Item IdItem Id

sq.ui.commands.ft.cases My Operation Cases $item.CaseId

sq.ui.commands.ft.teamLead
erTasks

My Team Cases $item.CaseId

sq.ui.commands.ft.teamMe
mberTasks

Cases Assigned To Me and
Cases In Queue

$item.CaseId

sq.ui.commands.ft.messages My Tasks and My
Notifications

$item.Id

sq.ui.commands.ft.instances Process I Started and
Process Page

$item.Instan
ceId



commandTablecommandTable Defines the added custom actions. 
Types of custom actions:

OpenWorkflowWindowCommand - Frontend option for a custom action
with a pop up form to get user input. Parameters are passed via a query
string.
InvokeWorkflowCommand - Backend option for custom action.
Parameters are passed via the web service "InvokeWorkflow".

Configure the behavior of the actions:

Selection mode:
Single: Only one item can be selected.
Multiple: Only multiple items cab ne selected.
Both: One or more items can be selected.

Selection limit: Number of maximum items that can be selected for
batch actions.
Batch mode: Relevant for toolbar actions.

True: Trigger the workflow once and pass it the list of selected
items.
False: Trigger the workflow for each selected item.

Title: Relevant for actions, set the title of the dialog frame.
Prompt: Set the prompt behavior for confirmation text and options.
Parameters:

The first parameter must be the row item Id. Set value expression
with the key name according to the grid you are working on (the
parameter name property is optional).
Add additional parameters as required by your workflow logic.

SectionSection DescriptionDescription



controlTablecontrolTable Defines the location in the UI where the custom action is available, the
Context MenuContext Menu and the ToolbarToolbar. 
General structure:

ContextMenu
ContextMenuItem X
ContextMenuItem Y
ContextMenuItem Z

ToolBar
ToolBarMenuItemA
ToolBarMenuItemB
ToolBarMenuItemC
Each menu item or toolbar item can include optional instructions
for ordering the actions:

Clear
Remove
Remove at
Insert before
Insert after
Insert at

Each menu item or toolbar item can include optional display rules
to determine the conditions for having the action enabled.

SectionSection DescriptionDescription

Starting from V10.7Starting from V10.7, you can configure custom actions with display rules that determine the selected Process
page process, stored view or view type:

The display rules can be applied on various context menu items and toolbar items.

Examples

Workflow space Id can be queried with the following:

rt.HttpRequest.Headers["WorkflowSpaceId"] == "GUID"

Solution Id can be queried with the following:

rt.HttpRequest.Headers["SolutionId"] == "GUID"

Selected stored view can be queried by name and type.

- type: rule
value: ':$context.StoredViewName=="caso"'
- type: rule
value: ':$context.StoredViewType=="shared"'   

The view type can be queried with the following expression:



- type: Rule
value: ': rt.HttpRequest.Headers["viewtype"] == "active"'
- type: Rule
value: ': rt.HttpRequest.Headers["viewtype"] == "completed"'


