
Configure YAML Overrides in Config Sets
Last Modified on 08/19/2025 8:00 am EDT

V10.8

Overview

As a workflow developer, while creating a new config set, you can set an existing config set as a base to
inherit it's configuration and override necessary configuration with minimal changes. The functionality
improves the implementation practices and facilitates upgrade procedures.

Overriding YAML documents

Following is the common structure of YAML documents in a config set in Cora Orchestration:

kind: <document|ruleSet>
metadata:
 name: <document name>
 spec: <document content>

At runtime, the documents are identified by the name parameter under the metadata . When a config
set is linked to the base config set, the documents in the inherited config set with same name , will
replace the documents from the base config set.
For example, if base config set contains a document with name: config-test/v1/documents/test , and the user
adds a document in the inherited config set with the same name , the document from the base config set
will be ignored.

Overriding YAML document contents

If the base config set contains the YAML document that is defined in the common structure, you can
merge its contents with a YAML document from the inherited config set.
Add /$overrides at the end of the name property of the document.

For example, given the following document defined in the base config set:

kind: document
metadata:
 name: config-test/v1/documents/test
spec:
 - item1: value1
 - item2: value2

The user may define a document in the inherited config set with /$overrides at the end of the document
name .

kind: document
metadata:
 name: config-test/v1/documents/test/$overrides
spec:
 - item3: value3

As a result, the two documents will be merged:

kind: document
metadata:
 name: config-test/v1/documents/test
spec:
 - item1: value1
 - item2: value2
 - item3: value3

YAML merge logic

When two YAML documents are merged, several rules apply recursively to all nodes of the document
(starting on the spec node). The merge logic depends on the node type.

Mapping Nodes

For a mapping node (key-value set), the values from the base document will be replaced with the values
from the override document.

Document in the base config set:

kind: document
metadata:
 name: config-test/v1/documents/test
spec:
 prop1: value1
 prop2: value2

Document in the inherited config set:

kind: document
metadata:
 name: config-test/v1/documents/test/$overrides
spec:
 prop2: newValue2

Result:

prop1 keeps the original value, prop2 takes the value from the override document:

kind: document
metadata:
 name: config-test/v1/documents/test
spec:
 prop1: value1
 prop2: newValue2

Sequence Nodes - Keyed Collections

For a sequence node (array) that contains a collection of mapping nodes, the system checks whether the
child nodes contain a property named id , name or $key . If such property exists, the child node is
considered a keyed item, and the merge will take the keys into account.

Document in the base config set:

Note that first item under prop1 doesn't have the name , it will not be affected by the merge.

kind: document
metadata:
 name: config-test/v1/documents/test
spec:
 prop1:
 - value: sub1val
 - name: sub2
 value: sub2val
 subItems:
 - item1
 - item2
 - item3
 prop2: value2

Document in the inherited config set:

kind: document
metadata:
 name: config-test/v1/documents/test/$overrides
spec:
 prop1:
 -name: sub2
 value: newSub2val
 subItems:
 - item4

Result:

The item sub2 under prop1 is merged with the same item from the base document. Note that the
override document updated the value property, and merged the collections under subItems :

kind: document
metadata:
 name: config-test/v1/documents/test
spec:
 prop1:
 -value: sub1val
 -name: sub2
 value: newSub2val
 subItems:
 - item1
 - item2
 - item3
 - item4
 prop2: value2

Using YAML tags for advanced merging

Clear

The tag !clear allows to clear the collection under the sequence node. This tag works both on keyed and
non-keyed collections.

Document in the base config set:

kind: document
metadata:
 name: config-test/v1/documents/test
spec:
 prop1:
 -name: sub1
 value: sub1val
 -name: sub2
 value: newSub2val
 subItems:
 - item1
 - item2
 - item3
 - item4
 prop2: value2

Document in the inherited config set:

kind: document
metadata:
 name: config-test/v1/documents/test/$overrides
spec:
 prop1:
 - !clear

Result:

The prop1 contains no items:

kind: document
metadata:
 name: config-test/v1/documents/test
spec:
 prop1: []
 prop2: value2

Insert After/Insert Before/Insert At

The tags !insertAfter and !insertBefore adds an item after or before another in the collection. The tag
must be placed in a separate property named $sequence . This tag works only with keyed collections.

Similarly, the !insertAt tag adds an item to a specific position in the list.

Document in the base config set:

kind: document
metadata:
 name: config-test/v1/documents/test
spec:
 prop1:
 - name: first
 value: firstVal
 - name: last
 value: lastVal
 prop2: value2

Document in the inherited config set:

kind: document
metadata:
 name: config-test/v1/documents/test/$overrides
spec:
 prop1:
 - name: second
 value: secondVal
 $sequence: !insertAfter first

Result:

Under the prop1 , the second is inserted after the first :

kind: document
metadata:
 name: config-test/v1/documents/test
spec:
 prop1:
 - name: first
 value: firstVal
 - name: second
 value: secondVal
 - name: last
 value: lastVal
 prop2: value2

Remove/Remove At

Tags !remove and !removeAt remove the keyed item from the collection. Use !remove <name> to delete
item by name, or !removeAt <position> to remove item at a specific position.

Document in the base config set:

kind: document
metadata:
 name: config-test/v1/documents/test
spec:
 prop1:
 - name: first
 value: firstVal
 - name: last
 value : lastVal
 prop2: value2

Document in the inherited config set:

kind: document
metadata:
 name: config-test/v1/documents/test/$overrides
spec:
 prop1:
 - !remove first

Result:

The item named first is removed from prop1 collection.

kind: document
metadata:
 name: config-test/v1/documents/test
spec:
 prop1:
 - name: last
 value: lastVal
 prop2: value2

NOTE

Configure inheritance:
Setting a base config set is done via the Edit Properties dialog in the DocumentSet Editor.
Config set inheritance is supported in one level only. You may set a config set as base only if
that config set is not already inheriting another config set.

Case sensitivity:
The name under metadata tag is case-sensitive.
The value of name , id , or $key property in the nodes list is case-insensitive.

Conflict resolution:
If you use !remove or !removeAt tag with wrong name and index, it will be ignored.
If there are a few items with the same name , id , or $key in the base, the override will
affect only the first item. Second and rest items with the same name will always be added to
the result of the override.
If you add a few items with the same name , id , or $key in the override (given there is an
item with this name in the base), it will merge all those items sequentially with the item from
the base.
The priority for key lookup is the following: first it looks for $key property, if it does not
exist, it checks for name property, and lastly for the id property.

